
Parallelism:

The Real Y2K Crisis

Darek Mihocka

August 14, 2008



The Free Ride

• For decades, Moore's Law allowed CPU 

vendors to rely on steady clock speed increases:

– late 1970's: 1 MHz (6502)

mid 1980's: 8 MHz (68000, 80286)

1990: 33 MHz (386, 486)

1994: 90 MHz (Intel Pentium)

2000: 1000 MHz (AMD Athlon, Intel Pentium III)

2001: 3000 MHz (Intel Pentium 4)



No Limits?

• In the mid 1990's incredible increase in clock speed due 
to introduction of out-of-order (OOO) cores such as Intel 
"P6" (Pentium Pro, Pentium II, Pentium III, Core 2) and 
AMD Athlon.

• Hardware took some of the optimization burden away 
from the programmer by allow you to write "good 
enough" code. Hardware re-ordered instructions for you.

• OOO cores allow instructions to "pass" each other, 
allowing pipeline bubbles such as memory cache miss 
latency to not hold up later instructions.



Reality Sets In

• In 2001, Intel predicted that by 2005 the Pentium 4 
would be running at 10 GHz:

– late 1970's: 1 MHz (6502)
mid 1980's: 8 MHz (68000, 80286)
1990: 33 MHz (386, 486)
1994: 90 MHz (Intel Pentium)
2000: 1000 MHz (AMD Athlon, Intel Pentium III)
2001: 3000 MHz (Intel Pentium 4)
2005: 10000 MHz (predicted)
2007: 3200 MHz (Intel Core 2 actual)

• Oops! What happened!



The Clock Speed Brick Wall

• CPU core clock speed increases outpaced memory speeds, 
requiring larger on-chip L1 and L2 caches, and deep pipelines to 
absorb the memory latency bubbles.

• Faster clock generates more heat, requires more cooling – bigger 
louder fans!

• Faster clock speed brings up other issues - physical layout of the 
core, gate propagation delays, and loss due to capacitance.

• Intel Pentium 4 and AMD Athlon peaked out at close to 150W power 
consumption! Laptop computers literally started catching on fire.



Wasteful Computing

• 1990's PCs and Macintosh computers did not need cooling fans on the 
CPU, just a passive heat sink. Typical laptop: 20 watts, desktop: 90 watts.

• Today, 1 billion Windows PCs potentially wasting 100W of power each.

• Worse, clock speed is not even an indication of overall performance. An 
Intel Pentium 4 on average Windows code retires about 1 instructions every 
2 clock cycles - 3.0 GHz Pentium 4 delivers 1500 MIPS throughput. “Older” 
Pentium III and AMD Athlon retire 1 instruction per clock cycle.

• Not surprising then that early reviews of Pentium 4 pointed out that both the 
"older" Pentium III and Athlon ran cirlces around the "new" Pentium 4.

• The release of the Pentium 4 and the design approaches of the hardware 
industry in late 2000 was the REAL Y2K crisis.



Improving IPC

• Clock speeds hit a brick wall at about 3.0 GHz. Further performance gains need to 
come from techniques that increase IPC (instructions-per-cycle) throughput.

• Some approaches so far:
– wider pipelines to improve instruction level parallelism: Intel Core 2 for example can retire 4 

instructions per cycle (but usually starved at decoder stage).

– Larger caches - 256K to 512K to 1M to 2M to 4M to 48M!?!?!?

– More emphasis on SIMD (SSE) - execute identical arithmetic or FP operations in parallel

– 64-bit registers - perform larger calculations using fewer instructions.

• Result: last generation of Pentium 4 in 2005 had much better IPC throughput but still 
suffered from power consumption issues.

• First in the notebook market (the Pentium M release in 2003) and then the desktop 
(Core Duo, Core 2 in 2006), Intel quietly went back to using the 1990’s “P6” core 
which achieves higher IPC at lower clock speeds.

• As if the Pentium 4 never happened!



Multi-Core Is Here

• In 2005, Intel rebooted, announcing push for multi-core 
computing, trading peak performance of a single thread 
(which consumes a lot of power) for best aggregate 
performance of multiple cores.

• This is not a new concept. Supercomputers did this 
decades ago.

• Parallel computing comes to the PC desktop!
Multi-core computing is parallel computing.



Parallelism Is Difficult

• Parallel computing passes the performance burden back to the programmer.

• Donald Knuth quoted in April 2008 said of multi-core computing: "hardware designers 
have run out of ideas... trying to pass the blame for the future demise of Moore's Law 
to the software writers".

• Most algorithms are single threaded. Trees, hash tables, linked lists, etc.

• Most programmers write single threaded code, e.g. performing synchronous file I/O 
(e.g. ReadFile or fwrite()).

• Object oriented languages perform hidden memory allocations and garbage collection 
"under-the-hood", resulting in unpredictable execution speeds, erratic pauses, and 
serial execution.

• Popularity of virtual machines creates more serialization - Java and .NET virtual 
machines rely on jitting, which tends to cause performance bottlenecks exactly at the 
time that you need it (application launch, loading new classes, etc).



Chaos

• The past 3 years have been a confusing time of hype about multi-core 
processors, hype about parallelism, and reliance on bogus SPEC 
benchmarks that are “embarrassingly parallel”, e.g. SpecJbb 2000.

• Ultimately, neither the Microsofts of the world nor the Intels of this world 
have made much progress. Developers still don’t even use critical sections 
correctly!

• Consumers are realizing that for the things they usual do, a 600 MHz single 
core 32-bit CPU is just as useful as the latest whiz bang 4-core 3.0 GHz 64-
bit CPU.

• Recent popularity of ultra-mobile notebooks - ASUS EEE, OLPC XO, Acer 
Aspire - all based on 1990's AMD and Intel CPU cores!

• How to make progress!?!?!?!?!



Dynamic Translation

• IPC throughput still has a long way to go. Most current CPU cores can ideally retire at least 3 
instructions per clock cycles, yet historic throughput is 0.5 to 1.0 IPC.

• Trend is to return to in-order cores (Xbox 360, Intel Atom) - fewer gates means smaller die and 
lower power consumption, but lower throughput than an OOO core at the same clock speed.

• Burden is once again very much on the programmer and the code generator (C/C++ compiler or 
Java/.NET jitter) to give the CPU as well optimized code as possible.

• I am of the personal opinion that we cannot rely on programmers or static compilers to fix the 
problem - code that is "ideal" today may not work on next year's CPU architecture.

• Legacy code is always doomed to become inefficient over time. Is the solution really to just keep 
rewriting it over and over again?

• One solution: use virtualization to dynamically recompile code on-the-fly. This is what Transmeta 
did almost 10 years ago and what needs to happen today in mainstream computing.

• Take the “write once run anywhere” approach of Java, but apply it to all code.


