Parallelism:
The Real Y2K Crisis

Darek Mihocka
August 14, 2008



The Free Ride

* For decades, Moore's Law allowed CPU
vendors to rely on steady clock speed increases:

— late 1970's: 1 MHz (6502)
mid 1980's: 8 MHz (68000, 80286)
1990: 33 MHz (386, 486)
1994: 90 MHz (Intel Pentium)
2000: 1000 MHz (AMD Athlon, Intel Pentium IlI)
2001: 3000 MHz (Intel Pentium 4)



No Limits?

* Inthe mid 1990's incredible increase in clock speed due
to introduction of out-of-order (OOOQO) cores such as Intel
"P6" (Pentium Pro, Pentium Il, Pentium Ill, Core 2) and
AMD Athlon.

« Hardware took some of the optimization burden away
from the programmer by allow you to write "good
enough" code. Hardware re-ordered instructions for you.

« OOO cores allow instructions to "pass" each other,
allowing pipeline bubbles such as memory cache miss
latency to not hold up later instructions.



Reality Sets In

« In 2001, Intel predicted that by 2005 the Pentium 4
would be running at 10 GHz:

— late 1970's: 1 MHz (6502)
mid 1980's: 8 MHz (68000, 80286)
1990: 33 MHz (386, 486)
1994: 90 MHz (Intel Pentium)
2000: 1000 MHz (AMD Athlon, Intel Pentium I11)
2001: 3000 MHz (Intel Pentium 4)
2005: 10000 MHz (predicted)
2007: 3200 MHz (Intel Core 2 actual)

* QOops! What happened!



The Clock Speed Brick Wall

CPU core clock speed increases outpaced memory speeds,
requiring larger on-chip L1 and L2 caches, and deep pipelines to
absorb the memory latency bubbles.

Faster clock generates more heat, requires more cooling — bigger
louder fans!

Faster clock speed brings up other issues - physical layout of the
core, gate propagation delays, and loss due to capacitance.

Intel Pentium 4 and AMD Athlon peaked out at close to 150W power
consumption! Laptop computers literally started catching on fire.



Wasteful Computing

1990's PCs and Macintosh computers did not need cooling fans on the
CPU, just a passive heat sink. Typical laptop: 20 watts, desktop: 90 watts.

Today, 1 billion Windows PCs potentially wasting 100W of power each.

Worse, clock speed is not even an indication of overall performance. An
Intel Pentium 4 on average Windows code retires about 1 instructions every
2 clock cycles - 3.0 GHz Pentium 4 delivers 1500 MIPS throughput. “Older”
Pentium Il and AMD Athlon retire 1 instruction per clock cycle.

Not surprising then that early reviews of Pentium 4 pointed out that both the
"older" Pentium Il and Athlon ran cirlces around the "new" Pentium 4.

The release of the Pentium 4 and the design approaches of the hardware
industry in late 2000 was the REAL Y2K crisis.



Improving IPC

Clock speeds hit a brick wall at about 3.0 GHz. Further performance gains need to
come from techniques that increase IPC (instructions-per-cycle) throughput.

Some approaches so far:

— wider pipelines to improve instruction level parallelism: Intel Core 2 for example can retire 4
instructions per cycle (but usually starved at decoder stage).

— More emphasis on SIMD (SSE) - execute identical arithmetic or FP operations in parallel
— 64-bit registers - perform larger calculations using fewer instructions.

Result: last generation of Pentium 4 in 2005 had much better IPC throughput but still
suffered from power consumption issues.

First in the notebook market (the Pentium M release in 2003) and then the desktop
(Core Duo, Core 2 in 2000), Intel quietly went back to using the 1990’s “P6” core
which achieves higher IPC at lower clock speeds.

As if the Pentium 4 never happened!



Multl-Core Is Here

* In 2005, Intel rebooted, announcing push for multi-core
computing, trading peak performance of a single thread
(which consumes a lot of power) for best aggregate
performance of multiple cores.

« This is not a new concept. Supercomputers did this
decades ago.

« Parallel computing comes to the PC desktop!
Multi-core computing is parallel computing.



Parallelism Is Difficult

Parallel computing passes the performance burden back to the programmer.

Donald Knuth quoted in April 2008 said of multi-core computing: "hardware designers
have run out of ideas... trying to pass the blame for the future demise of Moore's Law
to the software writers".

Most algorithms are single threaded. Trees, hash tables, linked lists, etc.

Most programmers write single threaded code, e.g. performing synchronous file 1/0
(e.g. ReadFile or fwrite()).

Object oriented languages perform hidden memory allocations and garbage collection
"under-the-hood", resulting in unpredictable execution speeds, erratic pauses, and
serial execution.

Popularity of virtual machines creates more serialization - Java and .NET virtual
machines rely on jitting, which tends to cause performance bottlenecks exactly at the
time that you need it (application launch, loading new classes, etc).



Chaos

The past 3 years have been a confusing time of hype about multi-core
processors, hype about parallelism, and reliance on bogus SPEC
benchmarks that are “embarrassingly parallel”, e.g. Specdbb 2000.

Ultimately, neither the Microsofts of the world nor the Intels of this world
have made much progress. Developers still don’t even use critical sections
correctly!

Consumers are realizing that for the things they usual do, a 600 MHz single
core 32-bit CPU is just as useful as the latest whiz bang 4-core 3.0 GHz 64-
bit CPU.

Recent popularity of ultra-mobile notebooks - ASUS EEE, OLPC XO, Acer
Aspire - all based on 1990's AMD and Intel CPU cores!



Dynamic Translation

IPC throughput still has a long way to go. Most current CPU cores can ideally retire at least 3
instructions per clock cycles, yet historic throughputis 0.5 to 1.0 IPC.

Trend is to return to in-order cores (Xbox 360, Intel Atom) - fewer gates means smaller die and
lower power consumption, but lower throughput than an OOO core at the same clock speed.

Burden is once again very much on the programmer and the code generator (C/C++ compiler or
Java/.NET jitter) to give the CPU as well optimized code as possible.

| am of the personal opinion that we cannot rely on programmers or static compilers to fix the
problem - code that is "ideal" today may not work on next year's CPU architecture.

Legacy code is always doomed to become inefficient over time. Is the solution really to just keep
rewriting it over and over again?

One solution: use virtualization to dynamically recompile code on-the-fly. This is what Transmeta
did almost 10 years ago and what needs to happen today in mainstream computing.

Take the “write once run anywhere” approach of Java, but apply it to all code.



