
A Proposal for Hardware-Assisted Arithmetic Overflow

Detection for Array and Bitfield Operations

Darek Mihocka

Intel Corp.

Darek.Mihocka@Intel.com

Jens Troeger

Intel Corp.

Jens.Troeger@Intel.com

Abstract

Detecting arithmetic overflow during summation operations

is vital to ensuring correct and secure behavior of many

types of code. For example, applying transformations to

signed integer pixel co-ordinates without any overflow

detection may result in pixels rendering at unexpected

negative co-ordinates, summing a large array of signed or

unsigned integers without overflow detection can result in

bogus totals, or performing arithmetic operations on packed

bitfields without overflow detection could result in

corruption of data in adjacent bitfields.

A traditional way to detect arithmetic overflow is to insert

specific checks of the host processor’s Overflow arithmetic

condition flag after each arithmetic operation to detect

signed integer overflow, or a check of the host processor’s

Carry arithmetic flag to detect unsigned integer overflow.

The C# language for example includes the keyword

“checked”
1
 which directs the code generator to inject such

checks. Similarly, some versions of the gcc native compiler

support a switch to generate such checks.
2

A drawback of this approach is that since it relies on the

host arithmetic flags to detect arithmetic overflow, the

addition or subtraction operation must immediately be

followed by the check as well as by some conditional

branch or trap for when the overflow is detected. This

severely serializes the ability to parallelize array summation

or packed bitfield arithmetic, as it requires a separate test

and branch for each arithmetic operation.

Modern processors such as the Intel Core and Intel Atom

series offset SIMD extensions which allow for packed data

operations on signed and unsigned integers.
3
 This permits

up to 8 additions or subtractions to be performed in one

operation, with overflow detection (in the form of a

Saturate status bit). However, even the SIMD approach is

limited to the data sizes and operations supported by the

particular SIMD instruction set.

An additional problem for either the traditional arithmetic

flags or SIMD based overflow detection mechanisms is that

they cannot operate on small or unconventional data sizes.

The Intel Larrabee
4
 SIMD instruction set for example, only

supports packed 32-bit and 64-bit integer types, and

therefore cannot operate on 8-bit or 16-bit integers directly

without additional data conversion operations.

Neither approach can operate directly on bitfield data types

such as the common 5-6-5 packing of RGB pixel values, or

something even more trivial such as incrementing a 4-bit

bitfield, since the smallest arithmetic flags generating

operations on most processors require data elements at least

8 bits wide.

This paper examines an alternative and purely integer-based

“lazy flags”
5
 method of detecting signed and unsigned

arithmetic overflow conditions which decouples the

generation of the sums (or differences) from the detection

of the arithmetic overflow in a manner that is not dependent

on the specific integer data size capabilities of the host

processor. Such a decoupling allows for the vectorization

of both the arithmetic operation as well as the overflow

detection without the need for specific SIMD extensions.

This has practical uses for runtime written in high-level

languages such as bytecode interpreters and simulators

where direct access to hardware arithmetic flags or SIMD

extensions is difficult.

This paper will then propose simple instruction set

extensions for implementing the lazy flags approach to

allow for hardware-assisted acceleration of overflow

detection across bitfields and arrays without the data size

restrictions of existing integer or SIMD implementations.

Keywords

Lazy Flags, Arithmetic Overflow, Hardware Acceleration

mailto:stanislav.shwartsman@intel.com

1.0 Introduction

Integer arithmetic on modern microprocessors is generally

performed on 8-, 16-, 32-, or 64-bit integers. These integers

may represent unsigned values or signed two’s complement

values. An 8-bit integer for example may represent the

unsigned values 0 through 255, or the signed values ranging

from -128 to +127.

Given two 4-bit integers A and B and the 4-bit sum S, the

individual bits in the addition can be represented as follows:

S3S2S1S0 = A3A2A1A0 + B3B2B1B0

The least significant bit position of the sum, bit S0, is the

sum of bits A0 + B0, which in an adder circuit can be

implemented using an XOR operation. The bit position

may also generate a carry-out bit which is propagated to the

next bit position, denoted as Cout0. Therefore,

S1 = A1 XOR B1 XOR Cout(0)

In general,

Sn = An XOR Bn XOR Cout(n-1)

Note that the carry-out bit from bit position n-1 is the same

as the carry-in bit to bit position n, therefore we can also

write each bit position’s addition operation as:

Sn = An XOR Bn XOR Cin(n)

An integer overflow condition occurs when the resulting

value of an operation cannot correctly be represented in the

same number of bits. For example, using 8-bit signed

integers, the values 127 + 1 should result in the value 128.

This is a correct result for unsigned integers. However,

since the number 127 is the largest positive 8-bit integer,

represented as 0x7F in hexadecimal, adding 1 result in

0x80, which is the signed value -128, not +128. This result

represents a signed integer overflow condition.

It is possible for an arithmetic operation to simultaneously

generate an unsigned overflow and a signed overflow. For

example, the 8-bit values 0xA0 + 0xA0 result in the 8-bit

sum 0x40. As unsigned integers this represents 160 + 160

= 64, and as signed integers this represents -96 + -96 = 64.

Obviously neither result is valid.

Modern microprocessors almost universally signal

arithmetic integer overflows using arithmetic condition

flags status bits following an arithmetic operation. For

example, IA32 instruction set architecture (ISA) based

processors such as the Intel Pentium and Intel Core series

signal overflow in the EFLAGS status register, which

contains 6 arithmetic flags – Carry Flag, Overflow Flag,

Zero Flag, Parity Flag, Adjust Flag, and Sign Flag.

Unsigned integer overflow is signaled by setting the Carry

Flag, while signed integer overflow is signaled by the

Overflow Flag.

A native compiler or dynamic code generator for IA32

architecture can simply append a “conditional branch if

Carry flag set” instruction to jump to an unsigned integer

overflow handler following an arithmetic operation.

Similarly, the compiler can append a “conditional branch if

Overflow flag set” instruction to jump to a signed integer

overflow handler.

Since the arithmetic conditional flags are generally

overwritten following each arithmetic operation and since

most architectures only contain a single set of these flags

per hardware thread, this results in the following

restrictions in the handling of arithmetic overflow:

 Overflow must be detected and acted upon almost

immediately after the arithmetic operation has

been performed, because a subsequent operation

will destroy the flags state.

 Overflow can be detected for standard integer data

sizes supported by the native ISA instructions, but

the condition flags will not directly reflect

accurately if non-standard sizes wish to be

operated on.

 The single instance of the condition flags implies

that packed integer operations, such as SIMD

addition operations, cannot directly report an

overflow condition.

Additionally, the arithmetic condition flags are not directly

accessible by high level languages (HLLs).

1.1 Explicitly Detecting Integer Overflow

To detect integer overflow in a high-level language, it is not

possible to directly read the hardware Carry Flag or

Overflow Flag. Instead, one can check for unsigned

overflow by checking whether the sum is of a smaller

magnitude than either of the two input operands, i.e. given

input exact-width integers
6
 A and B and sum S:

uint32_t s = a + b;

bool overflow = (s < a) && (s < b);

The compiled code ends up performing three arithmetic

operations in this case – the original addition operation as

well as two comparison operations (which are effectively

subtractions) – and also three jump operations – two

conditional branches as well as direct jump. This is the

actual optimized IA32 code generated by a mainstream C

compiler for performing and addition and overflow check

for 32-bit integers:

 lea ebx, DWORD PTR [edi+eax]

cmp ebx, edi

jae SHORT $LN4@unsigned_c

cmp ebx, eax

jae SHORT $LN4@unsigned_c

mov ecx, 1

jmp SHORT $LN5@unsigned_c

xor ecx, ecx

This code introduces inefficiency in the form of multiple

potentially mispredicted jumps which are generated and the

fact that all execution paths require at least one branch

taken. If this code appeared in the inner loop of a sum of

two arrays function, or a sum of array function, it would

add measurable overhead.

A similar expression can be used to detect signed overflow,

based on understanding two things:

 the addition of a positive number to a negative

number cannot generate overflow, implying that

both input values must be of the same sign.

 An overflowed result will have the incorrect sign,

implying that it will be the opposite sign as the

inputs.

Checking that both inputs are of the opposite sign as the

result is sufficient to detect signed integer overflow. This

can be coded up as follows
7
, exploiting the property of the

XOR (^) operation which generates a negative number if its

inputs are of opposite sign:

int32_t s = a + b;

bool overflow = ((s ^ a) & (s ^ b)) < 0;

The two expressions presented are standard methods by

which code in a high level language can explicitly detect an

integer overflow condition without having direct access to

the processor’s Carry or Overflow flags. But these are still

limited to supporting specific data sizes and potentially

generating multiple conditional branches per operation.

This would not be the ideal code to use in something like a

CPU simulator or bytecode interpreter written in a high

level language where performance was desired.

1.2 Handling Arbitrary Integer Sizes

There are times when built-in ISA data types do not match

the size of the actual integers being operated on. For

example, one could be operating on 5-bit bitfields, such as

when manipulating certain representations of RGB color

data. In these instances it is often necessary to extend the

integer to a larger size to match the size of a supported type.

Unsigned bitfields can be zero-extended and signed

bitfields can be sign-extended up to say, a standard 32-bit

integer width.

This size extension renders overflow detection useless.

Consider the case of the 0x7F + 0x01 = 0x80 signed

overflow previous presented. If the input values are sign-

extended to 32-bit and the added, the resulting addition

gives a perfectly valid result:

0x0000007F + 0x00000001 = 0x00000080

The host processor’s Overflow flag will not be set! This

problem arises not only when dealing with non-standard

integer sizes, but can also occur for any sized integer not

natively supported by a given ISA’s ALU unit. For

example, 64-bit PowerPC processors have no notion of 8-

bit addition or subtraction, so how would one go about

detecting overflow in that scenario? Simple sign extension

of the inputs is not the answer.

One solution is to modify the expressions from the previous

section to operate on the specific subsets of N bits equal to

the width of the input operands. For the case of unsigned

addition, the modified source code could look like this:

uint32_t s = (a + b) & ((1 << N)–1);

uint32_t overflow = (s < a) && (s < b);

And the case of signed addition, the modified source code

could look like this:

int32_t s = a + b;

bool overflow =

(((s ^ a) & (s ^ b)) & (1 << (N-1))) != 0;

This modification permits an architecture which supports

32-bit and 64-bit integer operations to detect integer

overflow for smaller width inputs and results, even down to

a single bit!

2.0 Generating Overflow Vectors

With the realization that overflow conditions can be

detected for any arbitrary bit position by just applying a

bitmask, the next logical step is to derive expressions which

generate an overflow vector. That is, an integer which

represents the bitwise vector of every bit position’s

overflow status. The signed overflow expression above

actually contains a bitwise logical sub-expression which

derives the necessary overflow bit vector:

 (s ^ a) & (s ^ b)

The unsigned integer overflow vector is not as obvious, as

the expression:

 (s < a) && (s < b)

is an arithmetic expression, not a bitwise logical expression.

However, we already know that:

Sn = An XOR Bn XOR Cin(n)

which can be rewritten as following:

Cin(n) = An XOR Bn XOR Sn

This permits one to derive the carry-in vector of an integer

addition operation:

uint64_t s = a + b;

uint64_t carryin = s ^ a ^ b;

For all but the highest bit position, the carry-in vector can

be converted to a carry-out vector using a single bit right

shift:

uint64_t s = a + b;

uint64_t carryout = (s ^ a ^ b) >> 1;

An expression to generate the full carry-out vector can be

derived by considering that when both input bits are set a

carry-out must occur, or if at least one input bit is set but

the output bit is different due to a carry-in then a carry-out

must also have occurred. This can be coded up as:

uint64_t s = a + b;

uint64_t carryout =

 ((a & b) | ((a | b) & ~s));

2.1 Lazy Arithmetic Flags for CPU Emulation

As previously published
8
 in work related to the Bochs

9
 open

source IA32 emulation project, the method of generating

carry-out vectors is extremely useful for efficiently deriving

the arithmetic flags without having direct access to the

processor’s hardware arithmetic condition flags. This

technique is sometimes referred to as the “lazy flags”

approach, because it minimally requires only recording

some variant of the inputs and outputs of an arithmetic

operation and deriving the specific flags as needed later on.

The lazy flags approach is both portable (as it has no

dependency on specific host hardware) and efficient and

allows Bochs and similar CPU simulators written in high

level languages to achieve speeds in excess of 100 MIPS.

As discussed in the Bochs work, all six of the IA32

arithmetic flags can be derived from just two values: the

result of an operation, and the carry-out vector of that

operation. Unlike some lazy flags variants, it is not

necessary to explicitly record the input values, only the

result and the carry-out vector.

The recoded result allows the derivation of the Zero Flag by

simply check if that result is zero. Similarly, checking the

sign of the result derives the Sign Flags. And examining

the lower 8 bits of the result determines the Parity Flag. To

avoid the need to record the original size of the arithmetic

operation, Bochs and similar simulators only need to sign-

extend the result to some canonical width, such as a 64-bit

integer.

The carry-out vector is used to derive the IA32 Carry Flag

of course, but also the Overflow Flag, and the Adjust Flag.

One thing to note is that the hardware definition of the

signed Overflow flag is purely derived from the upper two

carry bits of an arithmetic operation
10

. Therefore storing

the entire carry-out vector is sufficient to also derive the

overflow vector. It is not necessary to explicitly calculate

and record the expression (s ^ a) & (s ^ b).

By definition
11

, the Adjust Flag is simply the carry-out bit

of the 3
rd

 least significant bit, and therefore can be derived

by logically AND-ing the carry-out vector by 0x08.

The canonical form of the carry-out vector cannot simply

be sign-extended as is the case with the result. This would

cause an incorrect derivation of the Overflow flag for the

extended bit position. Instead, the most significant bit of

the carry-out vector needs to be shifted to a fixed bit

position. We recommend two approaches, one which shifts

the carry-out vector to the highest possible bit position, and

one which shifts the carry-out bits to the lowest two bits, as

demonstrated by these two code samples which

demonstrated how an 8-bit addition would be recorded into

a canonical 64-bit wide lazy flags state:

uint8_t s = a + b;

uint8_t cout =

 ((a & b) | ((a | b) & ~s));

uint64_t lazy_result = (int64_t)(int8_t)s;

uint8_t lazy_cvec = (cout>>6) | (cout&8);

Deriving the common arithmetic flags can now be done as

follows :

ZF = (lazy_result != 0);

SF = (lazy_result < 0);

CF = (lazy_cvec & 2) != 0;

OF = ((lazy_cvec + 1) & 2) != 0;

Note that simply adding 1 to lazy_cvec is sufficient to XOR

the lowest two bits together, instead of using the expression

((lazy_cvec ^ (lazy_cvec << 1)) & 2 != 0).

2.2 Optimizing Array Summation

An important concept learned from the lazy flags approach

is the realization that the act of performing an arithmetic

operation and the act of checking for an integer overflow

condition can be separated from each other. By recording

the carry-out vector the check can be postponed until well

after the host processor’s hardware arithmetic flags have

been lost.

A performance benefit of the lazy flags approach is that the

recording of the carry-out vector is a straight-line block of

code. Since no conditional branches are required to

generate the lazy flags state, it can be beneficial to use the

lazy flags approach in hot loops such as array summation to

defer the overflow check instead of performing a

conditional check and branch on each element.

2.3 Handling Packed Addition and Saturation

The act of walking arrays to compute a total of an array or

sum two arrays is can parallelized using SIMD. Arrays of

16-bit integers can be added, using SIMD packed addition

operations, 8 elements at a time. IA32 SIMD operations do

not explicitly set any kind of arithmetic overflow bit, so in

place of such a status bit, SIMD offers saturating versions

of signed and unsigned packed addition and subtraction

operations. These saturating operations avoid the need to

check for overflow by implicitly clamping the output value.

To even detect overflow in a packed saturating operation,

software has to explicitly perform a non-saturating

operation and compare that result to the saturating

operation. If the results are different, then one or more of

the packed result values was clamped.

There is an alternative approach which allows for

performing packed addition and subtraction operations

without the explicit use of SIMD. Using the carry-out

vector it is possible to detect the exact bit positions which

generate a carry-out, mask out the ones that correspond to

the high bits of each packed integer, and then use those to

saturate the integers as needed.

Consider the inner loop of a traditional saturating signed 8-

bit integer addition:

 int8_t sum = A[i] + B[i];

if (sum > 127)

 sum = 127;

else if (sum < -128)

 sum = -128;

Instead, 64-bit wide integers can be used to perform a

packed addition of eight 8-bit values:

uint64_t mask1 = 0x7F7F7F7F7F7F7F7F;

uint64_t mask2 = ~mask1;

uint64_t result_lo = (a & mask1) +

 (b & mask1);

uint64_t result_hi = ((a ^ b) & mask2);

uint64_t result = result_lo ^ result_hi;

Note that the packing size is determined purely by the

constant mask that is applied. A mask of 0x7F7F7F…

treats the data as packed 8-bit integer, while a mask of

0x7FFF7FFF… treats the data as packed 16-bit integers.

This approach allows for an arbitrary sized data lane, i.e.

one could in theory add packed 9-bit numbers.

To apply saturation, the carry-out vector for unsigned

integers, or the overflow vector for signed integers, is then

applied to adjust the summed values. In this example, the

result is adjust to apply signed 8-bit saturation:

uint64_t ovrflw, sat;

ovrflw = (~(a ^ b)) & (result ^ b);

ovrflw &= mask2;

// flip sign of bytes that overflowed

result ^= ovrflw;

// stuff 1 bits into overflowed bytes

result |= ((ovrflw >> 7) * 0x7F);

// invert to give 0x7F or 0x80

result ^= (((result&ovrflw)>>7) * 0x7F);

 // record any saturated bytes

sat |= ovrflw;

Unsigned 8-bit packed saturation would be applied as

follows:

 uint64_t carrys, sat;

carrys = (a & b) | ((a | b) & ~(a + b));

carrys &= mask2;

// write 0xFF to bytes that carried

result |= (carrys << 1) - (carrys >> 7);

// record any saturated bytes

sat |= carrys;

This approach allows for the simulation of SIMD

operations in a portable manner using a high level language,

and support non-standard packed data width.

3.0 Proposed ISA Extension

We have demonstrated several useful applications of the

carry-out and overflow vectors to detect integer overflow,

simulate arithmetic condition flags, accelerate array

operations, and even emulate SIMD operations of arbitrary

element width. The fundamental operation involved in all

these cases is the efficient generation of a carry-out vector

for addition and subtraction operations.

We propose an ISA extension to IA32 to make the carry-out

generation be a single instruction, similar to an addition of

subtraction but one that stores the carry-out bits instead of

the result bits. For 64-bit operations, the full 64-bit carry-

out vector would be generated. For smaller 8-, 16-, and 32-

bit operations, the valid vector would be replicated in the

high bits. The high two bits of such a result would always

derive the correct Carry Flag and Overflow Flag, and bit 3

of such a result would give the correct Adjust Flag.

Two instructions would be needed: ADDCOUT, a 3-

operand form of the carry-out generating addition, and

SUBCOUT, a 3-operand form of the carry-out generating

subtraction. The use of the 3-operand form, similar to the

widely used IA32 “LEA” instruction, allows the carry-out

vector to be generated in one clock cycle without the need

to emit additional MOV instructions to copy registers. In

most uses, the carry-out generation would be performed

before the actual arithmetic operation.

For example, if adding two registers, the standard IA32

integer instruction form requires destroying one of the two

input registers. Therefore, it is optimal to generate the

carry-out vector first, as shown here:

 mov rcx,input1

 mov rdx,input2

 subcout rax,rcx,rdx

 sub rcx,rdx

 mov carrys,rax

 mov result,rcx

The main benefits of this ISA extension – which would be

accessible to high level languages such as C and C++ via

compiler intrinsics – would be to allow for faster integer

overflow detection, to allow for deferred overflow

checking, to reduce CPU arithmetic flags emulation

overhead in simulators, and to permit performing certain

packed byte and packed bitfield operations using plain

integers instead of SIMD operations.

4.0 Conclusions and Further Research

We have demonstrated the lazy flags based techniques for

detecting unsigned and signed integer overflow in a CPU

agnostic manner. These techniques are suitable for use with

high-level languages, which makes them attractive for use

in CPU simulators and bytecode interpreters.

 We have also shown how the lazy flags approach is able to

detect overflow on non-standard integer sizes, permitting

more efficient handling of bitfields and packed data

structures using ordinary integer operations in lieu of

specific SIMD instruction capabilities.

Finally, we propose simple ALU instruction extensions for

addition and subtraction to facilitate efficient generation of

a carry-out vector.

5.0 References

1 Checked keyword, http://msdn.microsoft.com/en-

us/library/74b4xzyw%28VS.71%29.aspx

2 Options for Code Generation Conventions,

https://www.redhat.com/docs/manuals/enterprise/RHEL-3-

Manual/gcc/code-gen-options.html

3 Intel64 and IA32 Architectures Software Developer’s

Manual, http://www.intel.com/Assets/PDF/manual/253665.pdf

4 A First Look at the Larrabee New Instructions,

http://software.intel.com/sites/billboard/archive/larrabee-new-

instructions.php

5 Arithmetic Flags, Darek Mihocka,

http://www.emulators.com/docs/nx11_flags.htm

6 stdint.h, http://en.wikipedia.org/wiki/Stdint.h

7 Signalling Integer Overflows in Java,

http://www.drdobbs.com/open-source/210500001

8 Virtulization Without Direct Execution, Darek Mihocka,

Stanislav Shwartsman, ISCA 2008,

http://www.emulators.com/docs/VirtNoJit_Paper.pdf

9 Bochs IA32 Emulation Project, http://bochs.sourceforge.net/

10 PowerPC Programmer’s Reference Guide, XER Register,

https://www-

01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7

78525699600741775/$file/prg.pdf

11 Adjust Flag, http://en.wikipedia.org/wiki/Adjust_flag

http://msdn.microsoft.com/en-us/library/74b4xzyw%28VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/74b4xzyw%28VS.71%29.aspx
https://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/gcc/code-gen-options.html
https://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/gcc/code-gen-options.html
http://www.intel.com/Assets/PDF/manual/253665.pdf
http://software.intel.com/sites/billboard/archive/larrabee-new-instructions.php
http://software.intel.com/sites/billboard/archive/larrabee-new-instructions.php
http://www.emulators.com/docs/nx11_flags.htm
http://en.wikipedia.org/wiki/Stdint.h
http://www.drdobbs.com/open-source/210500001
http://www.emulators.com/docs/VirtNoJit_Paper.pdf
http://bochs.sourceforge.net/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
http://en.wikipedia.org/wiki/Adjust_flag

