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Abstract 

  

Detecting arithmetic overflow during summation operations 

is vital to ensuring correct and secure behavior of many 

types of code.  For example, applying transformations to 

signed integer pixel co-ordinates without any overflow 

detection may result in pixels rendering at unexpected 

negative co-ordinates, summing a large array of signed or 

unsigned integers without overflow detection can result in 

bogus totals, or performing arithmetic operations on packed 

bitfields without overflow detection could result in 

corruption of data in adjacent bitfields. 

 

A traditional way to detect arithmetic overflow is to insert 

specific checks of the host processor’s Overflow arithmetic 

condition flag after each arithmetic operation to detect 

signed integer overflow, or a check of the host processor’s 

Carry arithmetic flag to detect unsigned integer overflow.  

The C# language for example includes the keyword 

“checked”
1
 which directs the code generator to inject such 

checks.  Similarly, some versions of the gcc native compiler 

support a switch to generate such checks.
2
  

 

A drawback of this approach is that since it relies on the 

host arithmetic flags to detect arithmetic overflow, the 

addition or subtraction operation must immediately be 

followed by the check as well as by some conditional 

branch or trap for when the overflow is detected.  This 

severely serializes the ability to parallelize array summation 

or packed bitfield arithmetic, as it requires a separate test 

and branch for each arithmetic operation. 

 

Modern processors such as the Intel Core and Intel Atom 

series offset SIMD extensions which allow for packed data 

operations on signed and unsigned integers.
3
  This permits 

up to 8 additions or subtractions to be performed in one 

operation, with overflow detection (in the form of a 

Saturate status bit).  However, even the SIMD approach is 

limited to the data sizes and operations supported by the 

particular SIMD instruction set. 

 

An additional problem for either the traditional arithmetic 

flags or SIMD based overflow detection mechanisms is that 

they cannot operate on small or unconventional data sizes.   

The Intel Larrabee
4
 SIMD instruction set for example, only 

supports packed 32-bit and 64-bit integer types, and 

therefore cannot operate on 8-bit or 16-bit integers directly 

without additional data conversion operations. 

 

Neither approach can operate directly on bitfield data types 

such as the common 5-6-5 packing of RGB pixel values, or 

something even more trivial such as incrementing a 4-bit 

bitfield, since the smallest arithmetic flags generating 

operations on most processors require data elements at least 

8 bits wide. 

 

This paper examines an alternative and purely integer-based 

“lazy flags”
5
 method of detecting signed and unsigned 

arithmetic overflow conditions which decouples the 

generation of the sums (or differences) from the detection 

of the arithmetic overflow in a manner that is not dependent 

on the specific integer data size capabilities of the host 

processor.  Such a decoupling allows for the vectorization 

of both the arithmetic operation as well as the overflow 

detection without the need for specific SIMD extensions.  

This has practical uses for runtime written in high-level 

languages such as bytecode interpreters and simulators 

where direct access to hardware arithmetic flags or SIMD 

extensions is difficult. 

 

This paper will then propose simple instruction set 

extensions for implementing the lazy flags approach to 

allow for hardware-assisted acceleration of overflow 

detection across bitfields and arrays without the data size 

restrictions of existing integer or SIMD implementations. 
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1.0 Introduction 

 

Integer arithmetic on modern microprocessors is generally 

performed on 8-, 16-, 32-, or 64-bit integers.  These integers 

may represent unsigned values or signed two’s complement 

values.  An 8-bit integer for example may represent the 

unsigned values 0 through 255, or the signed values ranging 

from -128 to +127. 

 

Given two 4-bit integers A and B and the 4-bit sum S, the 

individual bits in the addition can be represented as follows: 

 

S3S2S1S0 = A3A2A1A0 + B3B2B1B0 

 

The least significant bit position of the sum, bit S0, is the 

sum of bits A0 + B0, which in an adder circuit can be 

implemented using an XOR operation.  The bit position 

may also generate a carry-out bit which is propagated to the 

next bit position, denoted as Cout0.  Therefore, 

 

S1 = A1  XOR  B1  XOR  Cout(0) 

 

In general, 

 

Sn = An  XOR  Bn  XOR  Cout(n-1) 

 

Note that the carry-out bit from bit position n-1 is the same 

as the carry-in bit to bit position n, therefore we can also 

write each bit position’s addition operation as: 

 

Sn = An  XOR  Bn  XOR  Cin(n) 

 

An integer overflow condition occurs when the resulting 

value of an operation cannot correctly be represented in the 

same number of bits. For example, using 8-bit signed 

integers, the values 127 + 1 should result in the value 128.  

This is a correct result for unsigned integers.  However, 

since the number 127 is the largest positive 8-bit integer, 

represented as 0x7F in hexadecimal, adding 1 result in 

0x80, which is the signed value -128, not +128.  This result 

represents a signed integer overflow condition. 

 

It is possible for an arithmetic operation to simultaneously 

generate an unsigned overflow and a signed overflow.  For 

example, the 8-bit values 0xA0 + 0xA0 result in the 8-bit 

sum 0x40.  As unsigned integers this represents 160 + 160 

= 64, and as signed integers this represents -96 + -96 = 64.  

Obviously neither result is valid. 

 

Modern microprocessors almost universally signal 

arithmetic integer overflows using arithmetic condition 

flags status bits following an arithmetic operation.  For 

example, IA32 instruction set architecture (ISA) based 

processors such as the Intel Pentium and Intel Core series 

signal overflow in the EFLAGS status register, which 

contains 6 arithmetic flags – Carry Flag, Overflow Flag, 

Zero Flag, Parity Flag, Adjust Flag, and Sign Flag. 

Unsigned integer overflow is signaled by setting the Carry 

Flag, while signed integer overflow is signaled by the 

Overflow Flag. 

 

A native compiler or dynamic code generator for IA32 

architecture can simply append a “conditional branch if 

Carry flag set” instruction to jump to an unsigned integer 

overflow handler following an arithmetic operation.  

Similarly, the compiler can append a “conditional branch if 

Overflow flag set” instruction to jump to a signed integer 

overflow handler. 

 

Since the arithmetic conditional flags are generally 

overwritten following each arithmetic operation and since 

most architectures only contain a single set of these flags 

per hardware thread, this results in the following 

restrictions in the handling of arithmetic overflow: 

 Overflow must be detected and acted upon almost 

immediately after the arithmetic operation has 

been performed, because a subsequent operation 

will destroy the flags state. 

 Overflow can be detected for standard integer data 

sizes supported by the native ISA instructions, but 

the condition flags will not directly reflect 

accurately if non-standard sizes wish to be 

operated on. 

 The single instance of the condition flags implies 

that packed integer operations, such as SIMD 

addition operations, cannot directly report an 

overflow condition. 

 

Additionally, the arithmetic condition flags are not directly 

accessible by high level languages (HLLs). 

1.1 Explicitly Detecting Integer Overflow 

 

To detect integer overflow in a high-level language, it is not 

possible to directly read the hardware Carry Flag or 

Overflow Flag.  Instead, one can check for unsigned 

overflow by checking whether the sum is of a smaller 

magnitude than either of the two input operands, i.e. given 

input exact-width integers
6
 A and B and sum S: 

 
uint32_t s = a + b; 

bool overflow = (s < a) && (s < b); 

 

The compiled code ends up performing three arithmetic 

operations in this case – the original addition operation as 

well as two comparison operations (which are effectively 

subtractions) – and also three jump operations – two 

conditional branches as well as direct jump.  This is the 

actual optimized IA32 code generated by a mainstream C 

compiler for performing and addition and overflow check 

for 32-bit integers: 



 
 lea     ebx, DWORD PTR [edi+eax] 

cmp     ebx, edi 

jae     SHORT $LN4@unsigned_c 

cmp     ebx, eax 

jae     SHORT $LN4@unsigned_c 

mov     ecx, 1 

jmp     SHORT $LN5@unsigned_c 

xor     ecx, ecx 

 

This code introduces inefficiency in the form of multiple 

potentially mispredicted jumps which are generated and the 

fact that all execution paths require at least one branch 

taken.  If this code appeared in the inner loop of a sum of 

two arrays function, or a sum of array function, it would 

add measurable overhead. 

 

A similar expression can be used to detect signed overflow, 

based on understanding two things: 

 the addition of a positive number to a negative 

number cannot generate overflow, implying that 

both input values must be of the same sign. 

 An overflowed result will have the incorrect sign, 

implying that it will be the opposite sign as the 

inputs. 

 

Checking that both inputs are of the opposite sign as the 

result is sufficient to detect signed integer overflow.  This 

can be coded up as follows
7
, exploiting the property of the 

XOR (^) operation which generates a negative number if its 

inputs are of opposite sign: 

 
int32_t s = a + b; 

bool overflow = ((s ^ a) & (s ^ b)) < 0; 

 

The two expressions presented are standard methods by 

which code in a high level language can explicitly detect an 

integer overflow condition without having direct access to 

the processor’s Carry or Overflow flags.  But these are still 

limited to supporting specific data sizes and potentially 

generating multiple conditional branches per operation.  

This would not be the ideal code to use in something like a 

CPU simulator or bytecode interpreter written in a high 

level language where performance was desired. 

 

1.2 Handling Arbitrary Integer Sizes 
 

There are times when built-in ISA data types do not match 

the size of the actual integers being operated on.  For 

example, one could be operating on 5-bit bitfields, such as 

when manipulating certain representations of RGB color 

data.  In these instances it is often necessary to extend the 

integer to a larger size to match the size of a supported type.  

Unsigned bitfields can be zero-extended and signed 

bitfields can be sign-extended up to say, a standard 32-bit 

integer width. 

 

This size extension renders overflow detection useless.  

Consider the case of the 0x7F + 0x01 = 0x80 signed 

overflow previous presented.  If the input values are sign-

extended to 32-bit and the added, the resulting addition 

gives a perfectly valid result: 

 

0x0000007F + 0x00000001 = 0x00000080 

 

The host processor’s Overflow flag will not be set!  This 

problem arises not only when dealing with non-standard 

integer sizes, but can also occur for any sized integer not 

natively supported by a given ISA’s ALU unit.  For 

example, 64-bit PowerPC processors have no notion of 8-

bit addition or subtraction, so how would one go about 

detecting overflow in that scenario?  Simple sign extension 

of the inputs is not the answer. 

 

One solution is to modify the expressions from the previous 

section to operate on the specific subsets of N bits equal to 

the width of the input operands.  For the case of unsigned 

addition, the modified source code could look like this: 

 
uint32_t s = (a + b) & ((1 << N)–1); 

uint32_t overflow = (s < a) && (s < b); 

 

And the case of signed addition, the modified source code 

could look like this: 

 
int32_t s = a + b; 

bool overflow = 

(((s ^ a) & (s ^ b)) & (1 << (N-1))) != 0; 

 

This modification permits an architecture which supports 

32-bit and 64-bit integer operations to detect integer 

overflow for smaller width inputs and results, even down to 

a single bit! 

 

2.0 Generating Overflow Vectors 
 

With the realization that overflow conditions can be 

detected for any arbitrary bit position by just applying a 

bitmask, the next logical step is to derive expressions which 

generate an overflow vector.  That is, an integer which 

represents the bitwise vector of every bit position’s 

overflow status.  The signed overflow expression above 

actually contains a bitwise logical sub-expression which 

derives the necessary overflow bit vector: 

 
 (s ^ a) & (s ^ b) 

 

The unsigned integer overflow vector is not as obvious, as 

the expression: 

 
 (s < a) && (s < b) 

 

is an arithmetic expression, not a bitwise logical expression. 

  



However, we already know that: 

 

Sn = An  XOR  Bn  XOR  Cin(n) 

 

which can be rewritten as following: 

 

Cin(n) = An  XOR  Bn  XOR  Sn 

 

This permits one to derive the carry-in vector of an integer 

addition operation: 

 
uint64_t s = a + b; 

uint64_t carryin = s ^ a ^ b; 

 

For all but the highest bit position, the carry-in vector can 

be converted to a carry-out vector using a single bit right 

shift: 

 
uint64_t s = a + b; 

uint64_t carryout = (s ^ a ^ b) >> 1; 

 

An expression to generate the full carry-out vector can be 

derived by considering that when both input bits are set a 

carry-out must occur, or if at least one input bit is set but 

the output bit is different due to a carry-in then a carry-out 

must also have occurred.  This can be coded up as: 

 
uint64_t s = a + b; 

uint64_t carryout = 

              ((a & b) | ((a | b) & ~s)); 

 

2.1 Lazy Arithmetic Flags for  CPU Emulation 
 

As previously published
8
 in work related to the Bochs

9
 open 

source IA32 emulation project, the method of generating 

carry-out vectors is extremely useful for efficiently deriving 

the arithmetic flags without having direct access to the 

processor’s hardware arithmetic condition flags.  This 

technique is sometimes referred to as the “lazy flags” 

approach, because it minimally requires only recording 

some variant of the inputs and outputs of an arithmetic 

operation and deriving the specific flags as needed later on.  

The lazy flags approach is both portable (as it has no 

dependency on specific host hardware) and efficient and 

allows Bochs and similar CPU simulators written in high 

level languages to achieve speeds in excess of 100 MIPS. 

 

As discussed in the Bochs work, all six of the IA32 

arithmetic flags can be derived from just two values: the 

result of an operation, and the carry-out vector of that 

operation.  Unlike some lazy flags variants, it is not 

necessary to explicitly record the input values, only the 

result and the carry-out vector. 

 

The recoded result allows the derivation of the Zero Flag by 

simply check if that result is zero.  Similarly, checking the 

sign of the result derives the Sign Flags.  And examining 

the lower 8 bits of the result determines the Parity Flag.  To 

avoid the need to record the original size of the arithmetic 

operation, Bochs and similar simulators only need to sign-

extend the result to some canonical width, such as a 64-bit 

integer. 

 

The carry-out vector is used to derive the IA32 Carry Flag 

of course, but also the Overflow Flag, and the Adjust Flag.  

One thing to note is that the hardware definition of the 

signed Overflow flag is purely derived from the upper two 

carry bits of an arithmetic operation
10

.  Therefore storing 

the entire carry-out vector is sufficient to also derive the 

overflow vector.  It is not necessary to explicitly calculate 

and record the expression (s ^ a) & (s ^ b). 

 

By definition
11

, the Adjust Flag is simply the carry-out bit 

of the 3
rd

 least significant bit, and therefore can be derived 

by logically AND-ing the carry-out vector by 0x08. 

 

The canonical form of the carry-out vector cannot simply 

be sign-extended as is the case with the result.  This would 

cause an incorrect derivation of the Overflow flag for the 

extended bit position.  Instead, the most significant bit of 

the carry-out vector needs to be shifted to a fixed bit 

position.  We recommend two approaches, one which shifts 

the carry-out vector to the highest possible bit position, and 

one which shifts the carry-out bits to the lowest two bits, as 

demonstrated by these two code samples which 

demonstrated how an 8-bit addition would be recorded into 

a canonical 64-bit wide lazy flags state: 

 
uint8_t s = a + b; 

uint8_t cout = 

              ((a & b) | ((a | b) & ~s)); 

uint64_t lazy_result = (int64_t)(int8_t)s; 

uint8_t lazy_cvec = (cout>>6) | (cout&8); 

 

Deriving the common arithmetic flags can now be done as 

follows : 

 
ZF = (lazy_result != 0); 

SF = (lazy_result < 0); 

CF = (lazy_cvec & 2) != 0; 

OF = ((lazy_cvec + 1) & 2) != 0; 

 

Note that simply adding 1 to lazy_cvec is sufficient to XOR 

the lowest two bits together, instead of using the expression 

((lazy_cvec ^ (lazy_cvec << 1)) & 2 != 0). 

 

2.2 Optimizing Array Summation 
 

An important concept learned from the lazy flags approach 

is the realization that the act of performing an arithmetic 

operation and the act of checking for an integer overflow 

condition can be separated from each other.  By recording 

the carry-out vector the check can be postponed until well 

after the host processor’s hardware arithmetic flags have 

been lost. 



 

A performance benefit of the lazy flags approach is that the 

recording of the carry-out vector is a straight-line block of 

code.  Since no conditional branches are required to 

generate the lazy flags state, it can be beneficial to use the 

lazy flags approach in hot loops such as array summation to 

defer the overflow check instead of performing a 

conditional check and branch on each element. 

 

2.3 Handling Packed Addition and Saturation 

 
The act of walking arrays to compute a total of an array or 

sum two arrays is can parallelized using SIMD.  Arrays of 

16-bit integers can be added, using SIMD packed addition 

operations, 8 elements at a time.  IA32 SIMD operations do 

not explicitly set any kind of arithmetic overflow bit, so in 

place of such a status bit, SIMD offers saturating versions 

of signed and unsigned packed addition and subtraction 

operations.  These saturating operations avoid the need to 

check for overflow by implicitly clamping the output value. 

 

To even detect overflow in a packed saturating operation, 

software has to explicitly perform a non-saturating 

operation and compare that result to the saturating 

operation.  If the results are different, then one or more of 

the packed result values was clamped. 

 

There is an alternative approach which allows for 

performing packed addition and subtraction operations 

without the explicit use of SIMD.  Using the carry-out 

vector it is possible to detect the exact bit positions which 

generate a carry-out, mask out the ones that correspond to 

the high bits of each packed integer, and then use those to 

saturate the integers as needed. 

 

Consider the inner loop of a traditional saturating signed 8-

bit integer addition: 

 
 int8_t sum = A[i] + B[i]; 

if (sum > 127) 

    sum = 127; 

else if (sum < -128) 

    sum = -128; 

 

Instead, 64-bit wide integers can be used to perform a 

packed addition of eight 8-bit values: 

 
uint64_t mask1 = 0x7F7F7F7F7F7F7F7F; 

uint64_t mask2 = ~mask1; 

uint64_t result_lo = (a & mask1) + 

            (b & mask1); 

uint64_t result_hi = ((a ^ b) & mask2); 

uint64_t result = result_lo ^ result_hi; 

 

Note that the packing size is determined purely by the 

constant mask that is applied.  A mask of 0x7F7F7F… 

treats the data as packed 8-bit integer, while a mask of 

0x7FFF7FFF… treats the data as packed 16-bit integers.  

This approach allows for an arbitrary sized data lane, i.e. 

one could in theory add packed 9-bit numbers. 

 

To apply saturation, the carry-out vector for unsigned 

integers, or the overflow vector for signed integers, is then 

applied to adjust the summed values.  In this example, the 

result is adjust to apply signed 8-bit saturation: 

 
uint64_t ovrflw, sat; 

 

ovrflw = (~(a ^ b)) & (result ^ b); 

ovrflw &= mask2; 

  

// flip sign of bytes that overflowed 

result ^= ovrflw; 

  

// stuff 1 bits into overflowed bytes 

result |= ((ovrflw >> 7) * 0x7F); 

  

// invert to give 0x7F or 0x80 

result ^= (((result&ovrflw)>>7) * 0x7F); 

 

 // record any saturated bytes 

sat |= ovrflw; 

 

Unsigned 8-bit packed saturation would be applied as 

follows: 

 
 uint64_t carrys, sat; 

 

carrys = (a & b) | ((a | b) & ~(a + b)); 

carrys &= mask2; 

 

// write 0xFF to bytes that carried 

result |= (carrys << 1) - (carrys >> 7); 

 

// record any saturated bytes 

sat |= carrys; 

 

This approach allows for the simulation of SIMD 

operations in a portable manner using a high level language, 

and support non-standard packed data width. 

 

3.0 Proposed ISA Extension 
 

We have demonstrated several useful applications of the 

carry-out and overflow vectors to detect integer overflow, 

simulate arithmetic condition flags, accelerate array 

operations, and even emulate SIMD operations of arbitrary 

element width.  The fundamental operation involved in all 

these cases is the efficient generation of a carry-out vector 

for addition and subtraction operations. 

 

We propose an ISA extension to IA32 to make the carry-out 

generation be a single instruction, similar to an addition of 

subtraction but one that stores the carry-out bits instead of 

the result bits.  For 64-bit operations, the full 64-bit carry-

out vector would be generated. For smaller 8-, 16-, and 32-

bit operations, the valid vector would be replicated in the 

high bits.  The high two bits of such a result would always 

derive the correct Carry Flag and Overflow Flag, and bit 3 

of such a result would give the correct Adjust Flag. 



 

Two instructions would be needed: ADDCOUT, a 3-

operand form of the carry-out generating addition, and 

SUBCOUT, a 3-operand form of the carry-out generating 

subtraction.  The use of the 3-operand form, similar to the 

widely used IA32 “LEA” instruction, allows the carry-out 

vector to be generated in one clock cycle without the need 

to emit additional MOV instructions to copy registers.  In 

most uses, the carry-out generation would be performed 

before the actual arithmetic operation. 

 

For example, if adding two registers, the standard IA32 

integer instruction form requires destroying one of the two 

input registers.  Therefore, it is optimal to generate the 

carry-out vector first, as shown here: 

 
 mov     rcx,input1 

 mov     rdx,input2 

 subcout rax,rcx,rdx 

 sub     rcx,rdx 

 mov     carrys,rax 

 mov     result,rcx 

 

The main benefits of this ISA extension – which would be 

accessible to high level languages such as C and C++ via 

compiler intrinsics – would be to allow for faster integer 

overflow detection, to allow for deferred overflow 

checking, to reduce CPU arithmetic flags emulation 

overhead in simulators, and to permit performing certain 

packed byte and packed bitfield operations using plain 

integers instead of SIMD operations. 

 

 

 

4.0 Conclusions and Further Research 
 

We have demonstrated the lazy flags based techniques for 

detecting unsigned and signed integer overflow in a CPU 

agnostic manner.  These techniques are suitable for use with 

high-level languages, which makes them attractive for use 

in CPU simulators and bytecode interpreters. 

 

 We have also shown how the lazy flags approach is able to 

detect overflow on non-standard integer sizes, permitting 

more efficient handling of bitfields and packed data 

structures using ordinary integer operations in lieu of 

specific SIMD instruction capabilities. 

 

Finally, we propose simple ALU instruction extensions for 

addition and subtraction to facilitate efficient generation of 

a carry-out vector. 
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